
Contents lists available at ScienceDirect

Biological Conservation

journal homepage: www.elsevier.com/locate/biocon

Animal welfare considerations for using large carnivores and guardian dogs
as vertebrate biocontrol tools against other animals
Benjamin L. Allena,b,⁎, Lee R. Allenc, Guy Ballardd,e, Marine Drouillyf, Peter J.S. Flemingd,g,
Jordan O. Hamptonh, Matthew W. Haywardb,i,j, Graham I.H. Kerleyj, Paul D. Meekd,k,
Liaan Minniel, M. Justin O'Riainf, Daniel M. Parkerl,m, Michael J. Somersn
aUniversity of Southern Queensland, Institute for Life Sciences and the Environment, Toowoomba, Queensland 4350, Australia
b Centre for Invasion Biology, Mammal Research Institute, University of Pretoria, Pretoria 0002, South Africa
c Robert Wicks Pest Animal Research Centre, Biosecurity Queensland, Toowoomba, Queensland 4350, Australia
d Ecosystem Management, School of Environmental and Rural Science, University of New England, Armidale, New South Wales 2351, Australia
e Vertebrate Pest Research Unit, New South Wales Department of Primary Industries, Armidale, New South Wales 2350, Australia
f Institute for Communities and Wildlife in Africa, Department of Biological Sciences, University of Cape Town, Upper Campus, Rondebosch 7700, South Africa
g Vertebrate Pest Research Unit, New South Wales Department of Primary Industries, Orange, New South Wales 2800, Australia
hMurdoch University, Murdoch, Western Australia 6150, Australia
i Conservation Biology Lab, School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales 2308, Australia
j Centre for African Conservation Ecology, Nelson Mandela University, Port Elizabeth 6034, South Africa
k Vertebrate Pest Research Unit, New South Wales Department of Primary Industries, National Marine Science Centre, Coffs Harbour, New South Wales 2450, Australia
l School of Biology and Environmental Sciences, University of Mpumalanga, Nelspruit 1200, South Africa
mWildlife and Reserve Management Research Group, Department of Zoology and Entomology, Rhodes University, Grahamstown 6140, South Africa
n Centre for Invasion Biology, Eugène Marais Chair of Wildlife Management, Mammal Research Institute, University of Pretoria, Pretoria 0002, South Africa

A R T I C L E I N F O

Keywords:
Animal ethics
Animal welfare
Biocontrol
Decision matrix
Dingo
Guardian dog
Fear effects
Humaneness
Landscape of fear
Leopard
Predator-prey relationships

A B S T R A C T

Introducing consumptive and non-consumptive effects into food webs can have profound effects on individuals,
populations and communities. This knowledge has led to the deliberate use of predation and/or fear of predation
as an emerging technique for controlling wildlife. Many now advocate for the intentional use of large carnivores
and livestock guardian dogs as more desirable alternatives to traditional wildlife control approaches like fencing,
shooting, trapping, or poisoning. However, there has been very little consideration of the animal welfare im-
plications of deliberately using predation as a wildlife management tool. We assess the animal welfare impacts of
using dingoes, leopards and guardian dogs as biocontrol tools against wildlife in Australia and South Africa
following the ‘Five Domains’ model commonly used to assess other wildlife management tools. Application of
this model indicates that large carnivores and guardian dogs cause considerable lethal and non-lethal animal
welfare impacts to the individual animals they are intended to control. These impacts are likely similar across
different predator-prey systems, but are dependent on specific predator-prey combinations; combinations that
result in short chases and quick kills will be rated as less harmful than those that result in long chases and
protracted kills. Moreover, these impacts are typically rated greater than those caused by traditional wildlife
control techniques. The intentional lethal and non-lethal harms caused by large carnivores and guardian dogs
should not be ignored or dismissively assumed to be negligible. A greater understanding of the impacts they
impose would benefit from empirical studies of the animal welfare outcomes arising from their use in different
contexts.

1. Introduction

Large carnivores influence ecosystems through consumptive and
non-consumptive effects. They frighten, displace, harass, chase, attack
and kill other animals (e.g. van Bommel, 2010; Thorn et al., 2012;

Potgieter et al., 2013; Fleming et al., 2014). Adding predators to multi-
predator multi-prey systems can produce a variety of outcomes
(Hairston et al., 1960; Holt and Lawton, 1994), including profound
welfare effects on other species (Fleming et al., 2012). Both the non-
lethal and lethal impacts of predators cause distress and/or death to
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individual prey (Fox, 1969; Power and Compion, 2009; Behrendorff
et al., 2018), which can lead to population declines and local extinction
of some species (Kruuk, 1971; Sinclair et al., 1998; Woinarski et al.,
2015) and population increases and recoveries of others (Terborgh and
Estes, 2010; Estes et al., 2013; Ripple et al., 2014). Besides killing prey,
predators also wound prey and act as vectors for pathogens debilitating
to prey, such as Echinococcus granulosus or Neospora caninum (e.g.
Barnes et al., 2008; King et al., 2011). Predators can also alter space use
and foraging patterns of individual prey and prey populations (Ripple
and Beschta, 2004; Atwood et al., 2009; Moll et al., 2017; Palmer et al.,
2017), causing local extinctions in places where these effects are strong.
The direct effects of predation can be a driver of ecosystem structure
(Hairston et al., 1960; Mech, 1966; Barbosa and Castellanos, 2005;
Eisenberg, 2011; Linnell, 2011; Peterson et al., 2014), as can indirect
effects (Brown et al., 1999; Creel and Christianson, 2008; Clinchy et al.,
2013; Bleicher, 2017). Thus, consumptive and non-consumptive me-
chanisms are expected to be present and strongly influence species
abundance, distribution and behaviour in multi-predator multi-prey
systems. These direct and indirect effects make predators attractive as
potential biocontrol tools for use against susceptible wildlife species
that humans wish to control.
Human conflict with wildlife is a global issue, and a wide variety of

wildlife control tools and techniques are used to reduce the distribution,
abundance and impacts of the animals involved (e.g. Fleming et al.,
2014; du Plessis et al., 2018). Lethal techniques include shooting,
trapping and poisoning (e.g. Bothma, 1971; Saunders and McLeod,
2007), and aim to maximise mortality. Non-lethal techniques include
aversive conditioning or deterrents (e.g. Breck et al., 2017; Smith and
Appleby, 2018), and aim to scare or displace animals. Other techniques,
such as exclusion fencing (de Tores and Marlow, 2011; Allen and West,
2013) and guardian animals (Potgieter et al., 2013; Linnell and
Lescureux, 2015; Allen et al., 2016), operate in both lethal and non-
lethal ways. All wildlife control tools are typically applied against a
select number of target species within multi-predator multi-prey sys-
tems, sometimes producing variable and uncertain outcomes (Treves
et al., 2016; Lennox et al., 2018; van Eeden et al., 2018; Campbell et al.,
2019).
Encouraged by the positive ecological changes reported following

the reintroduction of grey wolves (Canis lupus) to Yellowstone National
Park in North America (e.g. Ripple and Beschta, 2012) and many suc-
cess stories of using livestock guardian dogs (Canis familiaris, such as
Maremmas) to protect livestock (e.g. van Bommel, 2010; Potgieter
et al., 2013; Linnell and Lescureux, 2015), many now advocate for the
intentional use of large carnivores and/or guardian dogs as more de-
sirable ‘natural’ alternatives to traditional approaches to wildlife con-
trol like fencing, shooting, trapping, or poisoning (e.g. Ritchie et al.,
2012; van Bommel and Johnson, 2012; Letnic, 2014; Wallach, 2014;
Minnie et al., 2015; Newsome et al., 2015; Atkins et al., 2017). But
while such traditional tools have often been subject to intense and re-
peated formal assessment of their efficacy (e.g. Eldridge et al., 2002;
Allen et al., 2014; Campbell et al., 2019) and welfare impacts (e.g.
Fleming et al., 1998; Marks et al., 2004; Meek et al., 2019; Allen et al.,
In press), to date there has been very little consideration of the animal
welfare implications of deliberately using predation and/or fear of
predation as a wildlife management tool (Allen et al., 2017). This is
symptomatic of the disproportionate animal welfare scrutiny that is
applied to different conservation practices, with human-caused preda-
tion representing an under-addressed issue (Hampton and Hyndman, In
press).
Predation is not usually considered an animal welfare issue given

that the behaviour is not usually considered to be anthropogenic, but
rather natural. Nearly all ethical viewpoints applied to animal welfare
require consideration of only those processes that humans impose on
animals (Palmer, 2010; Fraser and MacRae, 2011), though this rule is
complicated and is not universal (Torres, 2015; Horta, 2017). When
predation occurs between wild animals living independent of humans,

few (if any) ethicists would consider humans to have a moral respon-
sibility to consider the welfare of prey (Palmer, 2010). However, when
predators are deliberately introduced (or reintroduced) into an eco-
system by humans, a process sometimes referred to as rewilding (Soulé
and Noss, 1998), predator effects on prey could be considered to be
anthropogenic and therefore warrant ethical scrutiny. Some authors
have considered the implications of knowingly exposing prey to pre-
dation when prey are introduced or reintroduced (e.g. Swaisgood,
2010; Harrington et al., 2013), but few authors have considered the
implications of intentionally causing predation when predators are in-
troduced or reintroduced (Allen et al., 2017). Here we refer to the de-
liberate release, reintroduction or deployment of predators or use of
predation or fear of predation as anthropogenic predation. Alternative
viewpoints may not consider such predation events to be anthropogenic
or may view the level of human responsibility for them to attenuate
over time. This question is complex, but important, because it de-
termines whether humans are responsible for the animal welfare im-
pacts arising from introducing predators or not. We assume that hu-
mans are responsible for the purposes of this assessment, but we revisit
this issue later.
Most (if not all) methods for managing wildlife are controversial

(e.g. Fitzgerald, 2009; Suryawanshi et al., 2014; Linnell et al., 2017;
Mormile and Hill, 2017; Slagle et al., 2017). A prominent source of
contention is the animal welfare impacts imposed on target and non-
target species, and the ethical issues these raise (Dubois et al., 2017).
For example, poisoning is commonly used to control dingoes (Canis
familiaris), coyotes (Canis latrans) and black-backed jackals (Canis me-
somelas; hereafter jackals) in attempts to reduce their impacts on sheep
(Ovis aries) and goats (Capra hircus; e.g. Fleming et al., 2014; Minnie
et al., 2016a; du Plessis et al., 2018). However, poisoning (like all other
approaches) is often undertaken without first demonstrating that the
target individuals or species are actually impacting livestock, without
measuring the efficacy of poisoning at reducing these livestock impacts,
and without assessing potential impacts of poisoning on non-target
species. These ‘shots in the dark’ (sensu Treves et al., 2016) have raised
ethical concerns about the justification for implementation of predator
control (e.g. Marks et al., 2000; Berger, 2006; Reddiex et al., 2006;
Allen et al., 2014; Doherty and Ritchie, 2017). Related to, but distinct
from ethical concerns, critics have also highlighted the many animal
welfare impacts associated with common wildlife control tools
(Sherley, 2007; Twigg and Parker, 2010; Littin et al., 2014; Mallick
et al., 2016; RSPCA, 2016), calling for their replacement with techni-
ques claimed to be less-harmful or for the cessation of wildlife control
altogether (e.g. Letnic, 2014; McManus et al., 2014; AJP, 2015; Smith
and Appleby, 2018). Recognition of these concerns and the ongoing
desire to improve wildlife control methods have contributed to the
refinement of wildlife management tools and techniques. This includes,
for example, the development and adoption of less-harmful traps and
similar devices, less-harmful poisons, and more-effective strategies for
their use (e.g. Marks et al., 2004; Anon, 2014; Eason et al., 2014; Meek
et al., 2018; Meek et al., 2019; Allen et al., In press). Great progress has
also been made in assessing the relative welfare impacts of wildlife
management tools and techniques in some regions of the world (e.g.
Sharp and Saunders, 2011; Littin et al., 2014; Baker et al., 2016;
Hampton et al., 2016). These assessments have included examination of
both direct and intentional impacts (e.g. those that arise from poi-
soning), and also indirect and unintentional impacts (e.g. those that
arise from fencing), which are collectively referred to as ‘harms’ (sensu
Fraser and MacRae, 2011).
Here, we assess the animal welfare impacts of deploying large car-

nivores and guardian dogs as biocontrol tools against a variety of
wildlife known or suspected to be in conflict with humans. Our goal is
to provide an assessment of the animal welfare impacts associated with
this control technique to assist wildlife managers and decision makers
in identifying the most appropriate wildlife control technique for a
given situation. We hope to highlight knowledge gaps and stimulate
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discussion on the advantages and disadvantages of introducing large
carnivores and guardian dogs to multi-predator multi-prey systems, and
whether or not their use truly can be considered to represent an animal
welfare improvement over the traditional tools commonly used by
wildlife managers worldwide.

2. Methods

2.1. Study systems

We assessed the animal welfare impacts of large carnivores and
guardian dogs as biocontrol tools in two different ecological systems:
Australia and South Africa.
In Australia, dingoes have been proposed as biocontrol tools for use

against European red foxes (Vulpes vulpes), feral cats (Felis catus),
European rabbits (Oryctolagus cuniculus), feral pigs (Sus scrofa), feral
goats, exotic small mammals such as house mice (Mus musculus) and
black rats (Rattus rattus), and overabundant native macropods such as
red kangaroos (Osphranter rufus; e.g. Letnic et al., 2012; Ritchie et al.,
2012; Wallach, 2014). In some parts of Australia (such as the sheep
farming zone in the south-east), all of these species co-occur, interact
with each other, and cause considerable social, economic and en-
vironmental impacts (West, 2008; McLeod, 2016). Dingoes are absent
from or occur in low densities across much of this zone given their
historical extirpation to enable sheep and goat production (Yelland,
2001; Allen and West, 2013, 2015). Dingoes are Australia's largest non-
human terrestrial predator and kill, consume and elicit fear in these
prey species (Glen and Dickman, 2005; Letnic et al., 2012; Allen and
Leung, 2014; Allen et al., 2018). As such, some have proposed the in-
tentional reintroduction and active restoration of the extant dingo po-
pulations within this zone as a means of suppressing target wildlife
species (e.g. Wallach, 2014; Newsome et al., 2015). Opposition has
arisen from livestock producers and other stakeholders about the po-
tential impacts of dingoes on livestock and threatened native fauna (e.g.
Allen and Fleming, 2012). In response, proponents further advocate for
the broad-scale deployment of livestock guardian dogs to protect the
tens of millions of livestock from the recovering dingo population (van
Bommel and Johnson, 2012; Smith and Appleby, 2018). The propo-
nents envisage a scenario where dingoes will control target wildlife,
guardian dogs will protect livestock from dingoes, and consequently
humans will not need to engage in lethal wildlife control. This approach
has been described by proponents as a “humane”, “virtuous”, “predator-
friendly”, “efficient”, “compassionate, cost-effective, sustainable and
ethical approach” to problematic wildlife control (e.g. Ritchie et al.,
2012; van Bommel and Johnson, 2012; Wallach, 2014; Wallach et al.,
2015; Johnson and Wallach, 2016).
In South Africa, leopards (Panthera pardus) have been proposed as

biocontrol tools for use against black-backed jackals and caracals
(Caracal caracal) on sheep and goat farms (Minnie et al., 2015; du
Plessis et al., 2018), and also for managing chacma baboons (Papio
ursinus), warthogs (Phacochoerus africanus), Himalayan tahr (Hemitragus
jemlahicus) and other species in other areas. In some parts of South
Africa, jackals and caracals occupy the trophic position of apex predator
given that larger predators, such as lions (Panthera leo) and leopards,
have been locally extirpated to enable sheep and goat production (Van
Sittert, 1998; Skead, 2007, 2011). Both jackals and caracals cause
substantial impacts to small livestock species and are subject to wide-
spread poisoning, trapping and shooting (Bergman et al., 2013; Minnie
et al., 2016b; Drouilly et al., 2018a; du Plessis et al., 2018; Minnie et al.,
2018). Warthogs damage fencing infrastructure (facilitating the dis-
persal of jackals; Minnie et al., 2018), exhibit other nuisance behaviours
(Mason, 1982), and have been introduced to many areas outside their
historical range (Somers, 1992; Skead, 2007, 2011). Baboons are fre-
quently implicated in livestock predation, crop-raiding activities, and
also perform a variety of other nuisance behaviours (Minnie, 2009;
Hoffman and O'Riain, 2012; Drouilly et al., 2018b; Somers et al., 2018).

Big cats, such as leopards, are known to kill, consume and illicit fear in
these wildlife species (Hayward et al., 2012; Clements et al., 2014).
Leopards present on livestock farms might therefore be expected to act
as biocontrol tools to reduce predation losses experienced by livestock
producers (Minnie et al., 2015). Permitting large predators to reside on
livestock farms is opposed by many livestock producers who seek to
prevent or mitigate all sources of livestock predation. Some have pro-
posed that livestock guardian dogs (such as Anatolian shepherd or
Kangal dogs) be deployed to protect livestock from predators (Potgieter
et al., 2013; du Plessis et al., 2018); they envisage a similar scenario
where large carnivores can control smaller predators, guardian dogs
protect livestock from large carnivores, and humans do not need to
engage in lethal wildlife control. This approach has been described by
proponents as an “effective”, “non-lethal”, “cost-effective”, “selective”,
“useful, practical, and economically feasible” way to achieve “improved
animal welfare and reduced non-target casualties” (Marker et al., 2005;
Potgieter et al., 2013; Rust et al., 2013; McManus et al., 2014).
The Australian and South African systems we describe are similar, in

that they both reflect multi-predator and multi-prey systems where
predators are expected to negatively influence prey through con-
sumptive (direct, kill) and non-consumptive (indirect, fear) mechan-
isms (e.g. Glen and Dickman, 2005; Letnic et al., 2012; Valeix et al.,
2012; Riginos, 2015). The two systems we describe are also different, in
that the Australian predator-prey guild is largely comprised of a de-
pauperate assemblage of relatively small-sized, invasive and exotic
species introduced since the European settlement of Australia in the late
1700s, whereas, the South African predator-prey guild is largely com-
prised of co-evolved native species of all sizes. We assess these two
systems to explore the welfare impacts that arise for different potential
applications of vertebrate biocontrols in different multi-predator multi-
prey systems. Our assessment provides insights into the welfare out-
comes of using large carnivores as biocontrol tools; we do not assess
their efficacy, cost-effectiveness, sustainability or utility.

2.2. Animal welfare assessment

We assessed the animal welfare impacts of using dingoes, leopards
and guardian dogs as biocontrol tools using the ‘Five Domains’ ap-
proach developed by Mellor and Reid (1994). This approach has since
been widely utilised to assess animal welfare impacts imposed by dif-
ferent wildlife control tools in a variety of contexts, including European
rabbit control in the United Kingdom (Baker et al., 2016) and brushtail
possum (Trichosurus vulpecula) poisons in New Zealand (Beausoleil
et al., 2016). It has also been adopted in Australia for assessing the
control tools used against multiple invasive carnivore and herbivore
species (RSPCA, 2010; Sharp and Saunders, 2011), where codes of
practice and standard operating procedures have been further devel-
oped for a wide variety of particular applications (available at www.
pestsmart.org.au). Using this approach, both lethal and non-lethal an-
imal control tools are given an overall ‘humaneness score’ that enables
their animal welfare impacts to be compared to other potential tools. As
a result, for example, ground-shooting a feral goat in the head
(rating= 3A) is considered to produce superior welfare outcomes to
aerial-shooting (rating=4C), which are both superior to mustering,
holding, drafting, transporting, and eventually slaughtering the goat in
an abattoir (e.g. Fig. 1; Sharp and Saunders, 2011). This welfare as-
sessment approach does not intend to prescribe which tool should be
used by wildlife managers or declare a given tool ‘humane’ or ‘in-
humane’, but rather makes the animal welfare impacts associated with
each tool quantifiable and explicit. This allows comparison of different
tools and techniques so that inferred animal welfare impacts can be
ranked and considered along with efficacy, efficiency and other prac-
tical criteria when determining the most appropriate animal control
tool for a given situation.
The full assessment approach has been described in detail pre-

viously (e.g. Mellor and Reid, 1994; Sharp and Saunders, 2011;
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Beausoleil and Mellor, 2015; Mellor and Beausoleil, 2015; Baker et al.,
2016). In summary, the assessment consists of two parts (A and B) that
are collectively rated on a scale of 1–8, with another two welfare-re-
lated factors considered for each part (duration of suffering, and level of
suffering) and collectively rated A–H (Fig. 2). Part A assesses the wel-
fare of the controlled, individual animal before death. Part B assesses
the mode of death. For each part, impacts are assessed within five do-
mains used to determine an overall score: domain 1 is food or water
deprivation, domain 2 is environmental challenge, domain 3 is disease/
injury/functional impairment, domain 4 is behavioural restriction, and
domain 5 is anxiety/fear/distress. The duration of suffering is assessed
in categories such as immediate to seconds, minutes, hours, days, or
longer. The level or intensity of suffering (which considers pain or
discomfort, fear and distress) is assessed in categories such as mild,
moderate, severe, or extreme. In other words, Part A assesses pre-death
welfare and is scored 1–8 (with 1 indicating least and 8 indicating most
suffering), Part B assesses the mode of death and is scored A–H (with A
indicating least and H indicating most suffering), and judgments of
suffering account for both the duration (in units of time) and the level

of suffering (along a gradient of severity). This assessment approach
produces overall scores such as 2B, 4D, 6F, and so on (Fig. 1), with a
score of 2A reflecting a tool that produces superior welfare outcomes to
a tool with a score of 3C, for example.
The scores should ideally be derived by an experienced and diverse

panel of participants considered to be expert in their subject-matter
(Sharp and Saunders, 2011). Baker et al. (2016) used only one author to
perform the assessment and Beausoleil et al. (2016) used a panel of six
scientists with various levels of expertise in animal welfare science, pest
control and veterinary toxicology. In our assessment, we used a large,
relevantly experienced and diverse author group who have collectively
contributed to 784 published articles during our combined 263 years of
experience (Table 1) at the time of writing. When performing our as-
sessment, all 13 authors thoroughly discussed all overall scores before
arriving at a unanimous consensus, which we report below. Despite our
efforts, we acknowledge that because the five domains approach uses
expert panels to make the assessment, it suffers from the problems of
subjectivity inherent to the use of expert opinion, including how panel
members are chosen. We attempted to minimise this issue by engaging

Fig. 1. The relative humaneness of a variety of control tools used against (A) European red foxes and (B) feral goats in Australia. Adapted from Appendix 12 in Sharp
and Saunders, 2011, and used here to illustrate the outcomes of the five domains animal welfare impact assessment process.

Part A
Overall impact on welfare <60 seconds 1–60 minutes 1–24 hours 1–7 days >7 days

Extreme 5 6 7 8 8
Severe 4 5 6 7 8

Moderate 3 4 5 6 7
Mild 2 3 4 5 6

No impact 1 1 1 1 1

Part B
Level of suffering <60 seconds 1–60 minutes 1–24 hours 1–7 days >7 days

Extreme E F G H H
Severe D E F G H

Moderate C D E F G
Mild B C D E F

No impact A A A A A

Time to insensibility

Duration of impact Fig. 2. The overall humaneness scoring matrices for (A)
Part A, the welfare impact associated with ‘the chase’ or
the period preceding death, and (B) Part B, the welfare
impact associated with ‘the kill’ or mode of death
(adapted from Sharp and Saunders, 2011, where detailed
definitions can be found explaining the mild, moderate,
severe and extreme categories).
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participants with diverse backgrounds, but the conclusions we reach
through use of this model are ultimately qualitative in nature (Mellor
and Beausoleil, 2015).
Dingoes, leopards and guardian dogs have not previously been as-

sessed as control tools of wildlife (Allen et al., 2017). Hence, we as-
sessed dingoes and guardian dogs as control tools of European red
foxes, feral cats, feral goats, small mammals (such as house mice and
black rats), kangaroos, feral pigs, and rabbits in Australia. We also as-
sessed leopards and guardian dogs as control tools of jackals, caracals,
cheetahs (Acinonyx jubatus), baboons, warthogs, fallow deer (Dama
dama), Himalayan tahr, feral pigs and Cape foxes (Vulpes chama) in
South Africa. The choice of prey species assessed for each predator was
intended to reflect those that some people have argued need to be
controlled (because of conflict with humans) and are potentially con-
trollable by these predators. For convenience, in the text we collectively
refer to all animals attacked or killed as ‘prey’, regardless of their
functional role (carnivore or herbivore etc.) or whether or not they are
consumed. We also refer to all those animals that do the attacking or
killing as ‘predators’, regardless of their trophic position (top-predator,
mesopredator, etc.) and whether or not their attacks successfully deter
or kill prey.

3. Results

3.1. Performing the assessment

Though prey might technically be deprived of food or have their
behaviour restricted during a predation event, we considered there to
be ‘no impact’ in Domains 1, 2 and 4, and we do not discuss these
further. We considered Domains 3 (e.g. injury, functional impairment)
and 5 (e.g. anxiety, fear, pain and distress) to be most applicable to the
mode of action (predation or fear of predation) in our case. We dis-
cussed and scored each predator against each prey over a period of
several weeks using the assessment approach described above. During
this process, the general paucity of empirical studies measuring the
animal welfare impacts experienced during predation led to some
personal variation in initial scores, with different values being attrib-
uted to the level of suffering authors perceived for individual prey
species. In other words, some authors initially considered a given prey
to be experiencing only mild suffering, whereas others felt that same
prey might be experiencing extreme suffering. After considering these
initial individual views, group discussion led to unanimous agreement
that once a prey animal becomes aware that a predator is about to kill
it, that prey animal can reasonably be assumed to be experiencing ex-
treme suffering in those moments preceding capture; and that once the
predator captures and proceeds to kill the prey, that prey animal can
reasonably be assumed to be experiencing extreme suffering in those
moments prior to insensibility or death. Thus, scores for Domain 3 and
Domain 5 were considered to be extreme in all cases.

3.2. Dingoes in Australia

The minimum time taken by dingoes to chase prey may be<60
seconds, and the minimum time taken to kill prey may also be<60
seconds. Assuming that prey experience extreme harm during both the
chase and kill components of the process, the minimum score that any
prey species can receive is 5E. This was the case only for small mam-
mals, such as mice and rats (Fig. 3). Given that chases may last minutes
(but unlikely hours) and time-to-death may also last minutes (but un-
likely hours; e.g. Behrendorff, 2018), scores for all other animals pro-
duce ranges, from 5E–6E for feral cats and European rabbits, from
5E–6F for red foxes and kangaroos, and 5E–6H for feral goats and feral
pigs (Fig. 3). The higher maximum scores for these prey reflect the
longer chasing and handling times that might be expected for larger
individuals of these prey species.

3.3. Guardian dogs in Australia

The minimum time taken by guardian dogs to chase Australian prey
may also be< 60 seconds, and the minimum time taken to kill prey
may also be<60 seconds. Assuming that prey experience extreme
harm during both the chase and kill components of the assessment, the
minimum score that any prey species can receive is also 5E. Given the
way guardian dogs function in relation to prey species (Allen et al.,
2016), scores for all animals produce ranges, from 5E–6F for feral cats
and red foxes, from 5E–6H for kangaroos, from 5F–6H for feral goats
and feral pigs, and 5F–7H for dingoes (Fig. 3). The higher maximum
scores for dingoes reflect the longer time it would normally take for
guardian dogs to chase, subdue and kill dingoes.

3.4. Leopards in South Africa

The minimum time taken by leopards to chase prey may be<60
seconds, and the minimum time taken to kill prey may also be<60
seconds. Assuming that prey experience extreme harm during both the
chase and kill components of the process, the minimum score that any
prey species can receive is still 5E. Given the way leopards ambush and
kill their prey (Hubel et al., 2018), scores for all animals produce
ranges, from 5E–5F for Cape foxes, jackals, warthogs, fallow deer, Hi-
malayan tahr, and feral pigs, and from 5E–6F for baboons and caracals
(Fig. 3). The higher maximum scores for baboons and caracals reflect
the longer time it might take for leopards to chase, subdue and kill these
prey given their similar morphology (caracals) or use of group defence
strategies (baboons).

3.5. Guardian dogs in South Africa

Like guardian dogs in Australia, the minimum time taken by guar-
dian dogs to chase South African prey may also be< 60 seconds, and
the minimum time taken to kill prey may also be<60 seconds.
Assuming that prey experience extreme harm during both the chase and
kill components of the assessment, the minimum score that any prey
species can receive is also 5E. Guardian dogs in South Africa produce
ranges of scores from 5E–6F for Cape foxes, jackals, warthogs and
caracals, and from 5F–6H for cheetahs and baboons (Fig. 3). The higher
maximum scores for these two species reflect the longer expected time
it might take for guardian dogs to chase, subdue and kill these dan-
gerous prey. As an aside, deployment of guardian dogs is not without
risk to the guardian dogs, which are also killed by dingoes and other
wild predators (e.g. Allen et al., 2016), producing similar harms to the
guardian dog.

4. Discussion

Large carnivores and guardian dogs are increasingly being re-
cognised for the ecosystem services they can provide (e.g. Linnell and
Lescureux, 2015; van Bommel and Johnson, 2016; Gilbert et al., 2017;
O'Bryan et al., 2018), including their ability to act as vertebrate bio-
control tools through consumptive and non-consumptive mechanisms
(e.g. Allen, 2015; Potgieter et al., 2016; Williams et al., 2018; Thinley
et al., 2018). Accordingly, predators are now being deliberately used or
recommended as management tools for reducing the distribution,
abundance and impacts of a variety of prey species, including both
carnivores and herbivores (e.g. Allen et al., 1998; Minnie et al., 2015;
Atkins et al., 2017). While much attention has been given to the animal
welfare impacts associated with the use of traditional tools and tech-
niques like poisoning, trapping or shooting (Sharp and Saunders, 2011;
Littin et al., 2014), almost no attention has been given to the animal
welfare impacts associated with ‘natural tools’, such as infectious bio-
controls (Hampton and Hyndman, In press) or the intentional use of
large carnivores and guardian dogs as vertebrate biocontrol tools (Allen
et al., 2017). Stakeholders have polarized views regarding such use of
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large carnivores. Some claim that deployment of large carnivores re-
presents an “ethical”, “humane” and “virtuous” approach (e.g. Wallach,
2014; Johnson and Wallach, 2016), while others claim that it represents
a “cruel”, “wrong”, “immoral” and non-compassionate approach (e.g.
Schwartz, 2016; Wallach et al., 2018). This becomes particularly con-
fusing when individuals draw opposite ethical conclusions depending
on the predator-prey combination being discussed (e.g. Wallach, 2014
advocates using dingoes to control foxes and feral cats, but later deni-
grates others' use of dingoes to control feral goats; Wallach et al., 2018).
With few empirical studies to draw from, the results of our formal as-
sessment of using large carnivores and guardian dogs as biocontrol tools
indicates that their animal welfare impacts vary depending on the large

carnivore involved, the prey species they are intended to control, and
the way in which the carnivores interact with those animals (Fig. 3). In
general, the consumptive and non-consumptive mechanisms used by
large carnivores and guardian dogs cause considerable animal welfare
impacts to the individual animals they are intended to control, and this
harm is typically rated greater than those harms caused by most tra-
ditional techniques (see Sharp and Saunders, 2011 for details).
Using dingoes to control red foxes, for example, rates as the most

harmful tool of all those that are currently in use or proposed for use
against red foxes. Trapping red foxes with padded leg-hold traps is rated
at 6B, or the most harmful of all current red fox control tools (Fig. 1;
Sharp and Saunders, 2011). This score conservatively accounts for the

Fig. 3. The relative humaneness of using dingoes in Australia (top left), guardian dogs in Australia (top right; lines used instead of circles for clarity), leopards in
South Africa (bottom left), and guardian dogs in South Africa (bottom right) as vertebrate biocontrol tools against a variety of wildlife species that come into conflict
with humans. Humaneness scores for applications shown in the bottom-left of each panel are considered less harmful than scores in the top-right of each panel.
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worst instances in which foxes remain in traps for up to 24 hours and
chew their own toes or feet (Meek et al., 1995; Fleming et al., 1998).
Dingoes are cursorial predators that ‘bite and shake’ their prey to death
(Corbett, 2001; Behrendorff et al., 2018). Using dingoes to chase, attack
and kill red foxes was conservatively scored as 5E–6F depending on
how long red foxes are chased and how long it takes dingoes to kill
them (Fig. 3). Even at best – 5E, which represents extreme harm being
experienced in a chase that lasts< 60 seconds, and extreme harm being
experienced in a kill that lasts< 60 seconds – using dingoes against red
foxes is rated as being more harmful to the red fox than using padded
leg-hold traps (compare Fig. 1 with Fig. 3). At worst – 6F, which re-
presents extreme harm being experienced in a chase that lasts> 60
seconds, and extreme harm being experienced in a kill that lasts>
60 seconds – using dingoes against red foxes substantially exceeds the
suffering experienced by using firearms, traps, poisons (both sodium
fluoroacetate or ‘Compound 1080’ and para-aminopropiophenone or
‘PAPP’), or any other red fox control tool. This is similarly the case for
using dingoes against feral cats (Fig. 3).
Using leopards to control various wildlife in South Africa is rated as

5E–6F depending on the target species and the time taken by leopards
to catch and kill the prey (Fig. 3). Leopards are ambush predators that
stalk and approach prey unseen prior to initiating a short chase or a
single pounce (Hubel et al., 2018), and as such, leopard prey are likely
to experience extreme harm in a chase that lasts< 60 seconds. Fur-
thermore, leopards employ a skull bite to kill smaller prey and a throat
or nape bite for larger prey (Brain, 1981), which will result in prey
experiencing extreme harm in a kill that lasts< 60 seconds. This type of
‘stalk and pounce’ predatory behaviour produces lower humaneness
scores (such as 5E; Fig. 3) than ‘chase and catch’ types of predatory
behaviour. However, baboons and caracals are formidable prey with
teeth and claws which can be used in defence against leopard attack
(Brain, 1981; Jooste et al., 2012). This is likely to increase capture and
handling time and thus a time-to-death of> 60 seconds, resulting in a
rating closer to 6F (Fig. 3). No comparative data exists to evaluate our
results against other commonly used wildlife control tools in South
Africa, such as ground shooting, cage trapping, leg-hold traps (or gin
traps) and poisoning (Minnie, 2009; du Plessis et al., 2018). However,
one may assume that the animal welfare impacts of similar manage-
ment tools for similar species (i.e. jackals and red foxes, and caracal and
feral cats) would be comparable between South Africa and Australia.
Thus, we can assume that the animal welfare impacts of a jackal caught
in a leg-hold trap in South Africa would be similar to that of a red fox
caught in a leg-hold trap in Australia, which was rated at 6B (Fig. 1).
Similarly, we can assume that the animal welfare impacts of shooting a
caracal in a cage in South Africa would be similar to that of a feral cat
shot in a cage in Australia, which was rated at 4B–5B (Sharp and
Saunders, 2011). Thus, even in a best-case scenario (rating=5E;
Fig. 3), using leopards against jackals, caracals, and other prey species
would be rated as being more harmful to jackals and caracals than using
leg-hold traps, ground shooting, or poisoning.
Guardian dogs have been used as biocontrol tools for centuries, and

can be very effective at reducing livestock predation in some contexts
(Coppinger and Coppinger, 1993; van Bommel, 2010; Potgieter et al.,
2013; Linnell and Lescureux, 2015). They typically work by defensively
guarding livestock, frightening potential predators away and seldom
seeking-out or hunting-down predators and other wildlife (e.g. Allen
et al., 2016). They are usually thought of as a non-lethal tool, intended
to non-consumptively instil fear and repel predators (van Bommel and
Johnson, 2014). However, guardian dogs are known to consumptively
kill target and non-target animals (van Bommel, 2010; Potgieter et al.,
2016), and should thus be classified as both a non-lethal (intentional
harm) and lethal (unintentional harm) tool. When such lethal effects
occur, the associated harms to the prey are relatively straightforward to
assess and are rated similarly to other large carnivores (Fig. 3). An
exception to this occurs when a guardian dog is involved in a fight that
is not immediately fatal to the target animal, but where death is delayed

and the animal dies as a consequence of its injuries (e.g. by secondary
infection or starvation) sometime later. This scenario produced the
higher limits of the range of some humanness scores for dingoes and
guardian dogs (Fig. 3), where extreme harm can be experienced over a
time-to-death that can last longer than 24 hours. Though extreme, at
their worst these outcomes are still similar to other natural predation
behaviours exhibited by other wild-living large carnivores. For ex-
ample, the restraining and killing of elephants (Loxodonta africana) by
lions (Panthera leo), which can last longer than 24 hours (Power and
Compion, 2009), would be scored at a maximum rating of 6H were it to
be considered anthropogenic predation worthy of scrutiny. Likewise,
the intentional biting, envenomation and eventual (days later) death of
water buffalo (Bubalus bubalis) by Komodo dragons (Varanus komo-
doensis; Auffenberg, 1981; Fry et al., 2009; Bull et al., 2010) would be
rated at 8F–6H, depending on when the chase is considered to stop and
the kill is considered to start. Deploying large carnivores as biocontrol
tools essentially represents a management decision to introduce con-
siderable consumptive and non-consumptive effects into food webs as a
means of mitigating the undesirable impacts of target wildlife. In almost
all cases, however, these ‘natural’ biocontrols will impose greater an-
imal welfare impacts to target animals than any other anthropogenic
tool used by managers, which typically have no chase period (e.g.
poisoning), an immediate or very short kill period (e.g. aerial shooting),
or both (e.g. ground shooting, cyanide poisoning; Sharp and Saunders,
2011).
Essential for assessing the animal welfare impacts of using large

carnivores and guardian dogs as biocontrol tools using the five domains
approach is an understanding of how carnivores hunt and catch their
prey, or their fine-scale interactions with other predator and prey
species. Despite a rich body of such literature (e.g. Barbosa and
Castellanos, 2005; Schmitz, 2008; Thaker et al., 2011; Belgrad and
Griffen, 2016; Moll et al., 2016; Allen et al., 2018), patterns of preda-
tion behaviour are rarely simple (MacNulty et al., 2007) and relatively
few studies quantify the animal welfare outcomes experienced by prey
during predation (but see Creel and Christianson, 2008; Kluever et al.,
2008; Creel et al., 2009; Behrendorff et al., 2018). Thus, in making
assessments such as ours (Fig. 3), we are reliant on expert opinion and
will almost certainly be working with few relevant empirical data.
Moreover, all qualitative index approaches for assessing animal welfare
impacts, such as the one we have used, have limitations in predicting
the actual welfare outcomes for animals (Beausoleil and Mellor, 2015).
“Because of the dearth of objective data relating to welfare in this
particular field, some judgements will have to be made subjectively”
(Sharp and Saunders, 2011; pg. 40). Making assumptions is unavoid-
able. Quantifying welfare impacts requires physiological measurements
of stress and injury responses over time for both the chase (Part A) and
the kill (Part B) phases. These data must then be compared with similar
measurements for the other methods (e.g. traditional tools) that form
the basis of the comparisons of animal welfare impacts. Given this, our
assessment (1) represents testable predictions based on current (lack of)
literature and expert opinion, (2) represents a valuable starting point
which stimulates discussion on the animal welfare implications of using
large carnivores and guardian dogs to control other species, and (3)
highlights the type of empirical information required to repeat our as-
sessment and advance our understanding of the harms associated with
these biocontrol tools.
In our assessment we assumed that in most (if not all) individual

predator-prey altercations the prey experiences an extreme level of
suffering during both the chase and kill components considered in the
assessment process. We also assumed that prey are aware of their im-
pending predation. For example, when a jackal becomes aware that a
leopard is chasing it with intent to kill it, the jackal is probably ex-
periencing some of the following criteria from Domain 5, described by
Sharp and Saunders (2011; pg. 48) viz., “extreme inescapable or un-
relieved anxiety, fear, pain, sickness, breathlessness, nausea, lethargy/
weakness, dizziness, unsatisfied thirst and/or hunger or [some] other
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negative affective experience causing distress which is judged to be at
or beyond the limits of reasonable endurance and results in the death of
the animal”. Any re-assessment of our results (Fig. 3) – by any other
assessment panel, either with or without empirical data – cannot yield
lower animal welfare scores than what we report unless (A) it is as-
sumed or can be shown that prey are unaware they are being chased or
killed or (B) prey experience less-than-extreme welfare harms when
they are knowingly being chased and killed. It might reasonably be
argued that in some individual predation events (particularly of leo-
pards against smaller prey), prey may be unaware of their impending
predation and/or may experience a relatively instantaneous death. If,
when or where this is true, then the humaneness scores we report will
be overestimated. We considered assuming prey unawareness or less-
than-extreme suffering as a minimum in Domains 3 and 5, but felt more
confident in assuming that such events would be the exception rather
than the rule. If prey are aware and the intensity of suffering is con-
servatively assumed to be extreme (as we have done), then the out-
comes of assessing large carnivores as biocontrol tools largely depend
on the duration of harm, which will vary in different predator-prey
combinations. For example, the animal welfare impacts of guardian
dogs on jackals (5E–6F) are relatively more harmful than those of
leopards on jackals (5E–5F) given that guardian dogs would typically
rely on a prolonged chase to subdue prey while leopards are ambush
predators which either pounce or engage in a very brief chase. Fur-
thermore, canids typically kill their prey with a bite-and-shake move-
ment (e.g. Behrendorff et al., 2018) rather than the swift and crushing
skull or neck bite used by leopards (e.g. Brain, 1981). Regardless of the
particular predator-prey combination, short chases and quick kills will
be rated less harmful than long chases and protracted kills.
In contrast to the lethal, consumptive outcomes of interactions be-

tween large carnivore biocontrol tools and prey (discussed above), their
non-lethal, non-consumptive harms are much more difficult to assess
reliably. If large carnivore and guardian dog biocontrol tools are suc-
cessful in establishing a landscape of fear (sensu Brown et al., 1999) and
animals suffer as a result of that fear, then harm is caused. Large car-
nivores and guardian dogs are obviously intended to work in this way
(e.g. Linnell and Lescureux, 2015; van Bommel and Johnson, 2015); the
challenge lies in determining just how harmful these effects are for the
target and non-target wildlife they are deployed against, and how these
harms compare to other wildlife management tools.
The duration of harm component of the assessment process is re-

latively easy to complete given knowledge of large carnivore contact
times with other species or the time they spend in close proximity to
each other. This will typically fall in the range of seconds to minutes
(e.g. Behrendorff, 2018), but may sometimes extend to hours (Barbosa
and Castellanos, 2005; Allen et al., 2016). However, these interactions
are repeated over time and may represent ‘cumulative effects’ or
‘compounded welfare impacts’ (Sharp and Saunders, 2011), the mag-
nitude of which is determined in large part by their frequency. What is
difficult to assess is how harmful these cumulative welfare effects are to
prey and whether these are more or less harmful than those of other
tools. Several difficult questions arise. For example, is dying from
poison over several hours a better welfare outcome than being re-
peatedly chased by a predator over many months or years, or being
displaced and forced into starvation or conflict with conspecifics? Or,
should the harm be assumed less for co-evolved predators and prey (e.g.
leopards and jackals) than those species that have only come into
contact through anthropogenic activities (e.g. leopards and guardian
dogs)? Prey species frequently come in close proximity to their pre-
dators in multi-predator multi-prey systems. Some species (e.g. klep-
toparasitic scavengers) even follow their dominant predators around,
hoping to scavenge a meal from them (Iyengar, 2008; Cusack et al.,
2017). Species that coexist in this way likely evolved behavioural and
physiological adaptations that allow them to tolerate – to some degree –
these non-consumptive, cumulative harms without debilitating phy-
siological effects. On the other hand, prey can suffer greatly from non-

lethal interactions, with the landscape of fear affecting their movement
patterns, sociality, foraging, reproduction, fitness and survival (Kluever
et al., 2008; Creel et al., 2009; Clinchy et al., 2013). Proactive anti-
predator behaviours typically carry food-mediated costs, reactive anti-
predator behaviours typically carry stress-mediated costs, and both of
these costs can be manifest as reduced fitness, fecundity and survival
(Creel, 2018). Thus, there is likely to be a strong positive relationship
between the strength of a landscape of fear and harmful animal welfare
impacts experienced by the prey (Fig. 4), and one cannot argue that a
strong landscape of fear exists while at the same time arguing that the
prey are not experiencing any harm from that fear. The cumulative
welfare impacts that arise from repeated non-consumptive predator-
prey interactions will always last longer than the effects of any lethal
anthropogenic wildlife control tool. Thus, ‘non-lethal’ does not ne-
cessarily equate to ‘least harmful’. Though challenging to quantify and
rank, the potential for large carnivores and guardian dogs to cause
substantial cumulative harms to both target and non-target animals
cannot be disregarded and requires further inquiry.

5. Conclusion and recommendations

Large carnivore and guardian dog biocontrol tools act through both
lethal (consumptive) and non-lethal (non-consumptive) mechanisms.
When intentionally deployed by humans for wildlife management
purposes, the harms they impose on other animals could be considered
anthropogenic in origin and require ethical scrutiny. The passive or
active use of such anthropogenic predation may offer important bene-
fits to wildlife management and conservation, but, like all other tools,
they cause harm to target and non-target animals. The animal welfare
impacts of large carnivores and guardian dogs as biocontrol tools ap-
pear similar across different predator-prey systems, but are highly de-
pendent on specific predator-prey combinations. In most cases where
they can be compared to other tools, our results indicate that predation
and/or fear of predation produces more harm to target animals than
most other alternative ‘human tools’ assessed. The intentional lethal
and non-lethal harms caused by introducing somewhat uncontrollable
consumptive and non-consumptive mechanisms into food webs should
not be ignored or dismissively assumed to be negligible. These findings
complement knowledge of the harm caused by traditional wildlife
management tools and have important implications for those con-
sidering rewilding programs or the use of large carnivores or guardian
dogs as biocontrols of wildlife within multi-predator multi-prey sys-
tems.
Some have argued that common control techniques, such as the

poisoning of red foxes with Compound 1080 or PAPP in Australian
sheep production zones, should be prohibited or abandoned ostensibly
on animal welfare grounds, and instead be replaced with the deploy-
ment of dingoes as biocontrol tools against red foxes and deployment of
guardian dogs to protect sheep from dingoes (e.g. Johnson and Wallach,
2016; Smith and Appleby, 2018). However, deliberately deploying
carnivores for this purpose is undeniably anthropogenic and assessment
of their animal welfare impacts suggests that this course of action re-
presents abandonment of less-harmful tools in favour of more-harmful
ones. Some have also argued that traditional forms of jackal control
(such as ground shooting at night) should be discouraged because they
impose greater animal welfare impacts than the deployment of guar-
dian dogs (du Plessis, 2013; McManus et al., 2014). However, guardian
dogs kill jackals directly and may also create a landscape of fear that
displaces jackals, which together have been rated here as causing
greater animal welfare impacts than ground shooting. How these harms
compare to other tools is presently unclear given that formal animal
welfare assessments have not been completed for other wildlife control
tools used in South Africa. Once completed, such assessments may en-
able more informed discussion about the animal welfare impacts as-
sociated with different wildlife control tools used there (see du Plessis
et al., 2018), but it should be noted that the five domains assessment
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approach does not generally consider indirect or unintentional harms
(Beausoleil and Mellor, 2015), which are also important (Fraser and
MacRae, 2011).
We predict that large carnivores and guardian dogs can be effective

vertebrate biocontrol tools in some contexts (e.g. Allen et al., 1998),
both despite and because of the consumptive and non-consumptive
harms they cause to prey animals. A greater understanding of their
utility as wildlife management tools would benefit from further de-
monstrations of their efficacy, advantages and disadvantages in dif-
ferent contexts, including explicit empirical assessment of their animal
welfare impacts on prey. This information will play an increasingly
important role in the future social license of using guardian animals
specifically and rewilding with large carnivores more generally
(Hampton and Teh-White, 2019).
Framing our assessment was the view that when predators are in-

troduced to an environment by humans, the impacts predators exert in
that environment constitute anthropogenic effects in perpetuity. This
logic is an extension of the ethic applied to the ecological impacts in-
curred by invasive species and the generally accepted moral responsi-
bility of humans to mitigate these impacts in the field of conservation
(Russell et al., 2016). However, we acknowledge that an alternative
view may be that when humans reintroduce predation (less so for novel
introductions) it restores certain previously occurring processes such
that an ecological system can henceforth function autonomously (al-
though, determining an acceptable historical benchmark creates its own
problems; Hayward, 2012). Under this premise, subsequent predation
events would not be considered anthropogenic and would not be mo-
rally equivalent to other wildlife management tools used by humans.
This complex question is further complicated by variation in what
might be regarded as the naturalness of the predator and the environ-
ment (Torres, 2015). For example, reintroducing wolves to Yellowstone
may be argued to be highly natural given that wolves previously oc-
curred there, were extirpated by anthropogenic processes, and were
absent for a period of only decades. On the other end of the spectrum,
the introduction, training and maintenance of domestic guardian dogs
in an environment that never supported natural wild populations of
dogs could only tenuously be considered natural.
The ethical consequences of this issue are profound for conservation

and invasive species disciplines. If it is asserted that the harm imposed
by all introduced and reintroduced predators deserve equal animal
welfare consideration as other wildlife management tools, then preda-
tion and fear of predation are likely to be seen as an unappealing option
for managers. Under this ethical interpretation, whereby anthropogenic
predation constitutes an ‘immoral’ approach, the social license of re-
wilding programs and all predator reintroductions would be extremely
fragile (Allen et al., 2017). Even the widely celebrated reintroduction of
grey wolves to Yellowstone National Park could be argued to constitute
an unacceptable anthropogenic harm imposed on the naïve prey

animals of that ecosystem. In contrast, should anthropogenic predation
not be considered anthropogenic at all (i.e. if humans are deemed to not
be responsible for the predation, fear and distress arising from in-
troducing predators), then concerns about the welfare effects of using
large carnivores as vertebrate biocontrols are void, and managers may
begin to deploy vertebrate biocontrols more frequently. In any event,
we assert that the animal welfare impacts arising from deliberate use of
large carnivores and guardian dogs requires more critical examination,
and we invite discussion.
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